
Running head: SQL INJECTIONS: CAUSES AND MITIGATION 1

SQL Injections: Causes and Mitigation

Divya Aradhya

Saint Leo University

Author’s Note

Contact: divya.aradhya@saintleo.edu

August 4, 2017

mailto:divya.aradhya@saintleo.edu

SQL INJECTIONS: CAUSES AND MITIGATION 2

Table of Contents

Abstract .. 3

Brief Description ... 4

Primary Issues .. 6

Current Mitigation Solutions ... 7

Insights and Remarks ... 9

References .. 11

SQL INJECTIONS: CAUSES AND MITIGATION 3

Abstract

The heart of an organization is its database, and all the security measures employed revolve

around keeping the database secure and protected. Structured Query Language is the language

used to communicate with the database to create, modify, and maintain data. The SQL injection

is a simple, yet deadly, mechanism that can wreak havoc on databases.

This paper is a study of the SQL injection, its relevance and significance in the realm of

information security, the primary issues pertaining to it, the current mitigation methods

employed (“what has been done”), and insights and remarks based on these findings and study.

SQL INJECTIONS: CAUSES AND MITIGATION 4

Brief Description

Structured Query Language (SQL) is a database language used by Oracle, Microsoft SQL,

MySQL, and other enterprise databases to query, operate, and administer databases and tables.

While each database has created its own flavor of SQL, at the core they are all based on the

principles of the generic SQL statements. Databases consist of tables, populated with data, and

metadata, and it represents the backbone of an organization or business. Database systems are

commonly used to provide backend functionality to many types of web applications.

Applications are created to interact with this data and form a bridge between the user and the

database to accept input, query the database and display results, based on roles, permissions, and

authorization (“Understanding SQL Injections”).

A SQL injection is a form of input on the application that manipulates the database to bypass the

security restriction and cause it to execute in unexpected and destructive ways. While SQL

injections can be accidental, they are almost always very carefully crafted malicious attacks that

are launched by attackers to gain access, manipulate, or even delete and destroy data.

The Open Web Application Security Project – OWASP – puts SQL Injections as #1 on their list

of top ten vulnerabilities and attacks (“Top 10 2013-Top 10”)

Relevance and Significance

The earliest description of SQL injection attacks can be traced to 1998 when Jeff Forristal, a

security researcher, used a pseudonym moniker ‘rain.forest.puppy’, to publish his findings in a

hacker journal called ‘Phrack’. He wrote about the about various features of Microsoft's IIS 3

and 4 Web servers and its SQL injection vulnerabilities (“How security flaws work: SQL

injection”).

SQL INJECTIONS: CAUSES AND MITIGATION 5

Since that time, SQL injection have been used effectively to exploit systems and compromise

sensitive data in massive breaches. In 2016, a Florida native was charged with felony for hacking

into a government election site and accessing sensitive data. He used SQL injection for his attack

(“How a security pro’s ill-advised hack of a Florida elections site backfired”). The SQLi Hall-

Of-Shame on an average shows at least two major data breaches due to SQL injections, every

month (“SQLi Hall-of-Shame”)

The SQL Injection heat map depicts how widespread the attack origins are throughout the world

map. Hence not only is SQL injections a grave widespread problem, it is also impossible to

restrict by geo-blocking.

(“Website Attacks - SQL Injection And The Threat They Present”).

A Barclays report states that 97 percent of data breaches resulting in hundreds of thousands of

dollars of losses are due to SQL injection attacks (“Barclays: 97 percent of data breaches still due

to SQL injection”).

SQL INJECTIONS: CAUSES AND MITIGATION 6

Primary Issues

The primary issue around SQL injections is that they can technically be simple to launch, as the

point of entry is an exposed webpage, but the ramifications they can cause are multi-fold and

devastatingly destructive.

The effects of SQL injections can result in the following security breaches-

 Authentication Bypass: The attacker gains elevated privileges and role-based access into

tables and rows and columns of data that is typically not accessible for the end user. He

can also get elevated to database administrative privileges without supplying a valid

username and password, and run Data Definition Language statements (CREATE,

ALTER, DROP) which can complete destroy the very structure of the database.

 Information Disclosure: The attacker gains access and privy to sensitive, restricted, and

protected data that can result in a breach of confidentiality.

 Compromised Data Integrity: The attacker injects malicious code to manipulate data

within the database. An attack of this sort leads to a breach data integrity and leads of

unimaginable losses if the database of a financial institution is attacked, and the table

containing the money in the account is altered. An attacker can also deface a public

website with false data leading to political tension, riots, and mayhem.

 Compromised Availability of Data: The attacker accesses the data, makes a copy, and

deletes valuable information, or the entire dataset. An organization can be brought down

to its knees when its database is deleted overnight; and

 Remote Command Execution: An attacker can perform remote command execution

through a database and eventually compromise the host operating system. These attacks

often leverage an existing, predefined stored procedure for host operating system

SQL INJECTIONS: CAUSES AND MITIGATION 7

command execution. The most recognized variety of this attack uses the xp_cmdshell

stored procedure that is common to Microsoft SQL Server installations or leverages the

ability to create an external procedure call on Oracle databases (“Understanding SQL

Injection”).

Current Mitigation Solutions

Having realized the gravity of the destruction caused by SQL injections, organizations like the

OWASP, have complied the findings of various security research publications and put out

guidelines for best practices.

In order to prevent SQL injections, the primary defenses would include-

 using pre-pared SQL statements in parameterized queries: eg, in C#.NET

String query =

 "SELECT account_balance FROM customer_table WHERE user_name = ?";

 try

{

 OleDbCommand ODcommand = new OleDbCommand(query, connection);

 ODcommand.Parameters.Add(new OleDbParameter("customerName", CustomerName

Name.Text));

 OleDbDataReader ODreader = ODcommand.ExecuteReader();

 // …

 }

catch (OleDbException se)

{

 // error handling

}

SQL INJECTIONS: CAUSES AND MITIGATION 8

 using safe stored procedures; eg. In VB.NET

Try

 Dim sCommand As SqlCommand = new SqlCommand("storedproc_getAccountBalance",

connection)

 sCommand.CommandType = CommandType.StoredProcedure

 sCommand.Parameters.Add(new SqlParameter("@CustomerName", CustomerName.Text))

 Dim sReader As SqlDataReader = sCommand.ExecuteReader()

 ‘ …

 Catch se As SqlException

 ‘ error handling

End Try

 whitelisting valid input

All SQL database and table identifying input should be validated against a strict whitelist.

Eg. In C#.NET-

String tableName;

 switch(PARAM):

 case "Value1": tableName = "userTable";

 break;

 case "Value2": tableName = "productTable";

 break;

 ...

 default : throw new InputValidationException("table name not in whitelist – cannot process it")

 escaping all user supplied input

This technique is to escape user input supplied before putting it in a query. It is very

specific to database used (Oracle, MS-SQL, MySQL) in its implementation. Eg. In

Oracle-

SQL INJECTIONS: CAUSES AND MITIGATION 9

String query = "SELECT user_id FROM user_data WHERE user_name = '" +

request.getParameter("userID")

 + "' and user_password = '" + request.getParameter("password") +"'";

 try {

 Statement DBstatement = connection.createStatement(…);

 ResultSet results = DBstatement.executeQuery(query);

 }

Insights and Remarks

Based on the research and findings, it is clear that SQL injections cause complete breach

of confidentiality, integrity, and availability, of data. The repercussions of SQL injections

have caused severe financial damages, loss of compliance leading to fines and penalties,

data breaches, and even bankruptcy. This problem continues to grow and shows no sign

of being obsolete.

The work done so far in identifying mitigation methods and ways to prevent SQL

injection attacks are very well developed and technically sound.

However, the reason for the existence and continued exploitation of this grave

vulnerability is far more than technical limitations.

Software development lifecycles are drastically shortened in order to roll out solutions

and quick deliverables. This ends up with untested applications being launched to the

public vulnerable to be exploits. Organizations need to take security more seriously and

invest time and budget in penetration testing and aggressive tiger team testing in order to

ensure that the interface open to the public are thoroughly tested and completely safe.

SQL INJECTIONS: CAUSES AND MITIGATION 10

Also systems rarely take stock of their legacy systems, and old unknown, un-updated, and

unmaintained isolated pages can still be hosted on the website – and hackers only have to

crawl through the portal, find it, and exploit it (“10 Reasons SQL Injection Still Works”).

Organizations need to regularly take stock of each page, and each interface that is

exposed on the DMZ, and ensure the legacy and retired pages are taken down. This

minimizes the surface area of attack and helps the firm stay on top of their security.

SQL injections are clever, simple, and easy to launch. An organization who exposes even

a simple contact form on its portal should do all it can in terms of policies, secure

software practices, secure coding, and through pen testing in order to safeguard

themselves from exploits in the wild.

SQL INJECTIONS: CAUSES AND MITIGATION 11

References

Understanding SQL Injection. (2016, December 16). Retrieved from

http://www.cisco.com/c/en/us/about/security-center/sql-injection.html

Top 10 2013-Top 10. (n.d.). Retrieved from

https://www.owasp.org/index.php/Top_10_2013-Top_10

Bright, P. (2016, October 28). How security flaws work: SQL injection. Retrieved from

https://arstechnica.com/information-technology/2016/10/how-security-flaws-

work-sql-injection/

Goodin, D. (2016, May 09). How a security pro’s ill-advised hack of a Florida elections

site backfired. Retrieved from https://arstechnica.com/security/2016/05/how-a-

security-pros-ill-advised-hack-of-a-florida-elections-site-backfired/

Curmudgeon, C. (n.d.). SQLi Hall-of-Shame. Retrieved from

http://codecurmudgeon.com/wp/sql-injection-hall-of-shame/

Cid, D. (2016, May 24). Website Attacks - SQL Injection And The Threat They Present.

Retrieved from https://blog.sucuri.net/2014/10/website-attacks-sql-injection-and-

the-threat-they-present.html

Curtis, S. (2012, January 19). Barclays: 97 percent of data breaches still due to SQL

injection. Retrieved from http://www.techworld.com/news/security/barclays-97-

percent-of-data-breaches-still-due-sql-injection-3331283/

SQL Injection Prevention Cheat Sheet. (n.d.). Retrieved from

https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

http://www.cisco.com/c/en/us/about/security-center/sql-injection.html
https://www.owasp.org/index.php/Top_10_2013-Top_10
https://arstechnica.com/information-technology/2016/10/how-security-flaws-work-sql-injection/
https://arstechnica.com/information-technology/2016/10/how-security-flaws-work-sql-injection/
https://arstechnica.com/security/2016/05/how-a-security-pros-ill-advised-hack-of-a-florida-elections-site-backfired/
https://arstechnica.com/security/2016/05/how-a-security-pros-ill-advised-hack-of-a-florida-elections-site-backfired/
http://codecurmudgeon.com/wp/sql-injection-hall-of-shame/
https://blog.sucuri.net/2014/10/website-attacks-sql-injection-and-the-threat-they-present.html
https://blog.sucuri.net/2014/10/website-attacks-sql-injection-and-the-threat-they-present.html
http://www.techworld.com/news/security/barclays-97-percent-of-data-breaches-still-due-sql-injection-3331283/
http://www.techworld.com/news/security/barclays-97-percent-of-data-breaches-still-due-sql-injection-3331283/
https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet

SQL INJECTIONS: CAUSES AND MITIGATION 12

Chickowski, E. (2013, August 5). 10 Reasons SQL Injection Still Works. Retrieved from

http://www.darkreading.com/application-security/database-security/10-reasons-

sql-injection-still-works/d/d-id/1139702

